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1    Introduction 

In [7], a stable method is presented that solves the inverse scattering problem for 
the Helmholtz equation in two dimensions. The algorithm is an iterative proce- 
dure, and requires multi-frequency scattering data. In this paper, we propose and 
test a single-frequency inversion method that solves the same inverse scattering 
problem. 

There are two major difficulties in the solution of an inverse problem naturally 
formulated as a system of nonlinear equations: ill-posedness and local minima. 
They seem to act indissolubly together to make the investigation of the inverse 
problem even more difficult. Here is a typical situation where we are confronted 
with a dilemma. On one hand, the lower the frequency employed in the inversion, 
the fewer the local minima there are in the nonlinear system, but the more ill- 
posed the problem becomes. On the other hand, to reduce the ill-posedness and 
therefore to increase the resolution of the inversion, a relatively high frequency is 
desired; but the higher the frequency, the more numerous the local minima there 
are in the nonlinear system. 

When high resolution is sought in a reconstruction, it can only be achieved 
with high-frequency. Therefore, the problem of local minima must be dealt with 
there. The fact that no optimization-based techniques have so far been made 
reliable shows that it is difficult to directly attack the problem. One of the 
well-known and systematic efforts made in solving the problem of local minima 
is the method of layer-stripping (see, for example, see [1], [2], [3]), in both the 
time and frequency domains. In this approach, the inverse, nonlinear problem 
is often reformulated as a nonlinear ordinary differential equation, usually of 
Riccati type in the frequency domain, for the scattering matrix in the context 
of inverse scattering (see [6]), or for the Dirichlet-to-Neumann mapping in the 
context of electrical impedance imaging (see [1], [3]). The measured data become 
the initial values of the ODE. The initial value problem is solved, which can 
be interpreted as layer-stripping the object being imaged, and the problem of 
local minima is simply eliminated. However, the propagation of the measured 
information into the object is unstable, for the initial value problem solved here 
is similar and connected to the Cauchy problem of the Laplace equation in the 
case of electrical impedance imaging, and of the Helmholtz equation in the case 
of inverse scattering, both being ill-posed. 

The single-frequency inversion method to be presented in this paper, as well 
as the multi-frequency method of [7], is based on the observation that the ill- 
posedness of the inverse scattering problem causes it to be almost linear in cer- 
tain regimes. In these regimes, the algorithm solves the resulting quasi-linear 
equations to produce approximate solution to the inverse problem within a nar- 
row circular layer surrounding the yet unrecovered part of the scatterer. This 
approximation is used to linearize the underlying narrow circular strip; in the 



process, the previously obtained solution is refined. 
The underlying principle of physics used here is referred to as the skin effect. 

For elliptic partial differential equations in two (or higher) dimensions, a solution 
highly oscillating in a spatial direction decays or grows rapidly (usually expo- 
nentially) in directions perpendicular to it. This is the case for any oscillatory 
solution of the Laplace equation, or for an evanescent wave of the Helmholtz 
equation. Therefore, when the object is probed on its boundary with a wave 
highly oscillating across its circumference, only a thin layer of the object is pene- 
trated, hence the term skin effect. Corresponding to this decaying incident field, 
the scattered field which we measure on the boundary contains information of the 
object in that thin layer. Such a measurement is entirely inadequate to determine 
the whole object—this obviously is a severely ill-posed problem. But the mea- 
surement may be used to approximately determine the object just in that thin 
layer. We can in fact do so since the problem of obtaining the thin layer from the 
measurement is essentially linear. That is how the recursive linearization process 
starts. 

Less highly oscillatory incident waves are then irradiated onto the object. 
While the probing energy penetrates a thicker layer of the object, the relationship 
between the measurements and the parameters to be recovered in the deeper 
layer becomes more nonlinear. These nonlinear equations can be considered as 
perturbations to the already solved equations at the previous layers, and therefore 
can be continually and recursively linearized with the standard techniques of 
regular perturbations. Thus, the recursive linearization is a continuation method 
on a parameter of the the incident field (see (8) and the integer m there) which 
controls the depth of its penetration. 

The inversion method is inherently multi-dimensional in the sense that in one- 
dimensional space the Cauchy problem for an elliptic equation is not ill-posed, 
that there is no decaying mode or skin effect there, and therefore that the method 
has no one-dimensional version. Also, had the problem not been ill-posed in two 
and higher dimensions, it might have been more difficult to design an algorithm 
to solve the inverse problem with numerous local minima. 

The main purpose of this paper is to propose a single-frequency inversion 
method, and to demonstrate its preliminary numerical results. The plan of the 
paper is as follows: in Section 2, we reformulate the inverse scattering problem 
using the concept of illuminated areas; in Section 3, we describe the inversion 
method for the Helmholtz equation in two dimensions. In Section 4, we im- 
plement the method numerically for the special case of cylindrically symmetric 
scatterers, and present the numerical results. Finally, in Section 5, we conclude 
with brief remarks on the performance of the inversion algorithm and discuss its 
generalizations. 

Remark 1.1 Although our numerical experiments demonstrate convergence and 



stability of the inversion algorithm, its analysis is presently incomplete. There- 
fore, the results presented in this paper should be viewed as experimental. 

2    Skin Effect and Illuminated Areas 

In this section, we formulate the forward and inverse scattering problems for the 
Helmholtz equation 

Acf>(x) + k2(l + q(x))<j>(x) = 0 (1) 

in two dimensions, and describe the skin effect and related concepts. 

2.1    The Scattering Problem 
In (1), we assume that k is a positive number, and q is a smooth function with 
compact support Q, C R2; we will be referring to the function q as the scatterer, 
or the forward model. We will be considering solutions of (1) of the form 

^(x) = <£o(x) + ^(x), (2) 

with <f>o the incident, or the incoming, field satisfying in Q the homogeneous 
Helmholtz equation 

A<^o(a:) + k2<f>o(x) = ^ (3) 

and with ip the scattered field subject to the outgoing (Sommerfeld) radiation 
condition 

lim Vr I ?r - ity) = 0. (4) 

We will be referring to the determination of the scattered field from a given 
incoming field as a forward scattering problem. It is well-known (see, for example, 
[4]) that the forward scattering problem is well-posed. 

It is also well-known that the scattering problem can be reformulated as the 
Lippmann-Schwinger equation for the scattered field rj) 

*{x) = -k2 f G*(x, 0*(fl(*>(0 + iKOK. (5) 

where Gk is the free-space Green's function for the Helmholtz equation. The 
inverse scattering problem is to determine the scatterer q inside the domain ti 
from measurements of the scattered fields outside the scatterer. For definiteness, 
we assume that the measurements are taken on the boundary of 0: 

{ ^(ar)|x€gn }. (6) 

The inverse problem is nonlinear since both the scatterer and the scattered field 
is unknown inside fi, and there is a product of them in the integral equation (5). 



2.2 Skin Effect and Weak Scattering 

For simplicity and without loss of generality, we assume that Ü C R2 is a disk 
D(m) defined by the formula 

D(m) = {(x,y), ||(*,y)||<B7}, (7) 

for some m > 0.  As is well-known, inside D{m), the solutions of (3) are of the 
form 

4>{™\r,Ö) = Jm(kr)-eime, (8) 

where m is integer, referred to as the propagation number hereafter; Jm is the 
Bessel function of order m, and J_m = (-l)mJm. Furthermore, any incident field 
to D(m) is a linear combination of (8); therefore, we only need to consider (8) as 
the incident fields for the purpose of inverse scattering. For n greater than km, 
the Bessel function Jn(kr) decays monotonically as the radius r decreases from 
m to zero. In fact, 

for kr substantially smaller than n. Therefore, for \m\ substantially greater than 
km, the incident field (8) decays rapidly in the neighborhood of r = m. It can 
only penetrate the skin of the scatterer which interacts with the incident field, 
and produces a weak scattered field ^m\ Thus, the Born approximation can be 
used to linearize the relationship between q and ip. In other words, dropping the 
term containing the product of q and ip in the Lippmann-Schwinger equation (5), 
to the second order of ^m\ we have 

^m\x) = -k2 I      Gk(x,0q(04m\0dti, (10) 
JD(za) 

for \m\ substantially greater than km. Note that the major contribution of the 
integral over D(m) comes from a thin layer of the disk near the boundary. 

2.3 Illuminated Areas 

As is shown in the preceding section, the incident field <f>^ illuminates a thin 
layer of the scatterer for \m\ substantially greater than km. When \m\ decreases, 
the layer the incident field penetrates becomes thicker. In this section, we describe 
this process and introduce necessary notation. 

As is well-known (see, for example, [5]), for an integer n > 0, Jn(z) is an 
oscillatory function of z for z > n. It decays as z decreases in [0,n], and it 
decays to zero at the rate zn as z goes to zero. Therefore, given a small number 
e > 0, there exists zn > 0 such that \Jn(z)\ < e for all z < zn. Furthermore, zn 



is roughly of the order rc, and decreases as n decreases.  Therefore, in the disk 
D(w), the incident field 

(11) <f><?\r,6) = Jn(kr)-eine 

illuminates an annular area 

A0(n,k) = {(r,e)\rn<r<w}, (12) 

where k • rn = zn, and rn decreases as n decreases.   Figure 1 shows sixteen 

Figure 1: Absolute Values of the Incident Fields. 

curves depicting n + |<% | for n = 0,1,..., 15, k = 6.2, as functions of the radius 
r € [0,7r]. For n > 1, the flat portion of each curve corresponds to the area that 
is near the center of the scatterer and is not illuminated by the incident field <%n'. 
The area that is not illuminated by 4>Q is essentially the center r = 0, whereas 
4>Q ' illuminates the entire scatterer. 

Remark 2.1 It is possible to rigorously define and calculate rn, a process omitted 
here since it is tedious and its result is irrelevant to the subsequent discussions. 

Definition 2.2 Let V be a domain in R2, and g : V »-»■ C a smooth function. 
For e > 0, we refer to 

{(x,y), \g(x,y)\>e}cV (13) 



as the e-essential support of g. We will omit t from the expression "e-essential" 
if t is a small number and its explicit reference there is superfluous. 

It follows from Definition 2.2 that the area A0(n, k) illuminated by the incident 
field 4>Q is the essential support of the incident field in D(w). We similarly 
define the illuminated area of the total field 

(fiW = <^m) + ^ (14) 

as the essential support of the total field in D(w), and denote it by Ä(m,k). 

Therefore, 

Figure 2: Absolute Values of the total Fields. 

A(n,k)=   U   A(m,k) 
\m\>n 

is the illuminated area of the scatterer by the total fields 

{ </>{m\ \m\ > n }. 

(15) 

(16) 

We also refer to A(n, k) as the illuminated area by the scattering experiment 
with incident fields (16). Obviously, D(w) D A(0, lb) D A(l, k) D A{2, k) D .... 

Figure 2 shows sixteen curves depicting n + \<f>^\ for n = 0,1,..., 15 as 
functions of the radius r, where <^(n) is the total field corresponding to the forward 



scattering problem with w = ir, k = 6.2 and a cylindrically symmetric scatterer 
q defined by the formula 

q(r) = 0.26 • [0.55 cos(4r) - 0.44sin(8r) + 0.25 sin(12r) + 0.14cos(16r)].    (17) 

For n > 1, the flat portion of each curve corresponds to the area that is near 
the center of the scatterer and is not illuminated by the total field <f)(n\ The 
area that is not illuminated by <j>^ is essentially the center r = 0, whereas <f>^ 
illuminates the entire scatterer. 

2.4    Reformulating the Inverse Scattering Problem 

The essence of inversion is to determine a forward model q, which may not be 
the same as q, but which produces, exactly or approximately, the scattering 
measurement 

{ ^m\x)\xedD{kw) } (18) 

in the scattering experiment with the incident field <jy™' for all integer m. More- 
over, for the sake of stability, we require that q has small L2 norm. In this section, 
we formalize these two requirements. 

Definition 2.3 Suppose that in a scattering experiment, the two forward models 
q : Q, i—► R and g : S7 i—> R, produce respectively the two scattering measurements 
tj)\dn and rp\an. For a given e > 0, the two scattering measurements are said to 
be t-essentially the samt if 

||(^|sn-^|sn)||2 < c (19) 

We will omit t from the expression "e-essentially" if e is meant to be a small 
number and its explicit reference there is superfluous. 

Definition 2.4 To a scattering experiment, the two forward models q and q are 
said to look (essentially) the same if they produce essentially the same scattering 
measurements in the experiment. 

Definition 2.5 A forward model q is said to be observable, or an observable part 
of the original scatterer q, to a scattering experiment at frequency k, if it looks 
the same as the original q, and its L2 norm is the least among those that look the 
same as q. 

It follows from the Lippmann-Schwinger equation (5) and Definition 2.5 that an 
inversion using the incident fields 

{ <t\ \m\>n) (20) 

can only at best produce observable part of q in A(n, k). 

7 



Definition 2.6 Given an integer n > 0, we denote by E(n) the scattering exper- 
iment with the incident fields (20), and by qn : A(n, k) »-> R1 the observable part 
of q corresponding to the experiment E(n) (here it is assumed that the observable 
forward model qn exists and is unique). 

With qn and A(n, k), the scattering problem (5) can be modified as (see Remark 
2.10) 

1,W{x) = -k> f     Gk(x,o-UO-l^\0 + ^(m)(0]^,        (21) 
J Ayn,k) 

for \m\ > n. And therefore the inverse problem is to obtain qo which satisfies 

^\x) = -e I      Gk(x, t)MMdm\t) + *{m)(tM, (22) 
JA(0,k) 

with prescribed scattering data 

{ i>{m)(x)UdDM, ra integer }. (23) 

Remark 2.7 More precisely, q0 has the least L2 norm among those forward mod- 
els q whose scattering data 

{ 4>{m)(x)\x€dD{zs) } (24) 

satisfy 

(I; IIW>(mW) - #m W))lß) 2 < e, (25) 
for a prescribed small number e > 0. 

Remark 2.8 Suppose that v ^ 1 is a positive number, and that the forward 
model q is observable to the scattering experiment with the incoming fields 

{ <f>oi, <^02 }, (26) 

whereas the forward model q is observable to the scattering experiment with the 
incoming fields 

{ <hu " ■ 4>Q2 }■ (27) 
Then, the two forward models are not the same in general, because the cost func- 
tions (25) corresponding to the two sets of incident fields are different. 

Remark 2.9 In general, qn : A(n, k) \-> K,1 and qn„i : A(n — 1, A:) i—»> R1 are not 
identical in A{n — 1, k), but both look the same to the scattering experiment E{n). 

Remark 2.10 Corresponding to the incident field <% , for \m\ > n, the scat- 
tered field ^(m) in (21) is actually dependent on n, and could have been denoted 
there by ^(m-n). In other words, ^(m-n) and 0(m'n_1) are not the same in general, 
because they are the scattered fields corresponding to different forward models: qn 

and qn-\. On the other hand, since both the forward models look the same as the 
original scatterer q, the two scattered fields ^>(m'n) and ^(m'n_1) have the same 
value on the boundary of D(kw), which is the prescribed scattering data (18). 



2.5    A Continuous Version of the Propagation Number 

The propagation number n of the total field 

<£(") = <f>W + V><") (28) 

measures the depth of the illuminated area A(n, k): the smaller it is, the deeper 
the total field penetrates the scatterer.   Since A(n,k) and qn depend on the 
discrete variable n, it is analytically improper to carry out perturbational analysis 
of A(n, k) and qn on n. In this section, we generalize the propagation number n 
to a continuous variable 77. 

Given a real number b > 0 (the actual value of b is qualitatively unessential 
in the following discussion), consider a smooth function v : R,1 h-+ R1 defined by 
the formula 

'0, 77 < -b, 
"(T}) = \   1, »?>0, (29) 

monotone,   77 € [—b, 0]. 

For 77  > 0, we denote by E(JI) the scattering experiment with the weighted 
incident fields 

u^ = u{\m\ - v) ■ ^m) (30) 

for all integer m. We further denote by qv the observable part of q to the exper- 
iment E{T}) (see Remark 2.8), and by v^m'v^ the corresponding scattered field, so 
that 

vim.v){x) = _k2   f GkiXttyMMvt^iZ) + V^'KtM. (31) 
JD(w) 

It is easy to observe the following facts. 

1. If 77 > b, the incident fields actually used in the experiment £^(77) are not 
all but only those whose propagation numbers m are greater, in absolute value, 
than 77 — 6. 

2. If 77 = N is substantially greater than kw, every incident field used in the 
experiment E(rj) can only penetrate a thin layer of the scatterer. This means 
that for all \m\ > N — b the Lippmann-Schwinger equation (31) can be replaced 
by the Born approximation (see Section 2.2) 

vM{x) = _p /      Gk(x,0U0-^'N\0^. (32) 
JD{w) 

The observable forward model #N can be obtained by solving these linear equa- 
tions for given scattering data 

{ v(m<»\x)\xedD{zj), \m\ > N - b }. (33) 

9 



3. At T] = 0, incident fields of all propagation numbers are used in the 
experiment, and they are equally weighted by the factor v{\m\) = 1. Therefore, 
the forward model q0 is identical to q0, both being the observable part of q 
corresponding to the same scattering experiment with all the incident fields 

(m) { <f>K™>,   for all integer m }. (34) 

Remark 2.11 Clearly, for a small number 8, the scattering experiment E(n — 8) 
is a small perturbation to the experiment E(n). More specifically, it follows from 
(30) that the incident field v}™*' depends on n smoothly, and so do the scattered 
and total fields, due to the well-posedness of the forward scattering problem. In 
the reminder of the paper, we assume that qv also depends on n smoothly. 

3    Layer-stripping via Skin Effect 

The aim of inverse scattering is to determine ?n|n=0 (see Section 2.4, and Remark 
2.7 therein), or equivalently, to determine qv\v=o (see Section 2.5). The two for- 
ward models qv and qn depend on the two different parameters n and n, one being 
integer and therefore discrete, the other real number and therefore continuous. 
Accordingly, the iterative inversion method to be presented in this section has 
two versions: one determines q0 via perturbational analysis on the continuous 
parameter 77, the other determines q0 on the discrete parameter n. Their de- 
scriptions are almost identical. Their numerical performances are similar. Both 
versions can be interpreted as layer-stripping the scatterer. 

3.1    Recursive Linearization on 77 

The nonlinear inverse problem can be recursively linearized via a standard per- 
turbational analysis, also known as the method of continuation, on n. It finds 
the forward model ?„ first for a large 77 where the nonlinear equations governing 
qv are essentially linear. The method then determines qn.s for a small number S. 
The nonlinear equations governing qv_s can be linearized by those governing qn. 
This process is repeated, and finally, q0 is obtained. We describe the inversion 
method in the following four steps. 

Step 1 (Initialization).   Choose N sufficiently greater than kw, and divide 

0 r, 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1——1 1 »» 

m m m 
Figure 3: Discretization of 77. 

10 



the interval [0, N] into M sufficiently small chunks with the grid 

{ »?O,77I,---,7?M }, (35) 

where 770 = 0, f)M = N, and 77,- < r?,-+i for 0 < i < M. We intend to obtain qv at 
V = T)M,T]M-i,. . .,T)0. 

Step 2 (Born Approximation). At 77 = TJM = N, obtain the observable forward 
model §N by solving the linear equations (32). 

Remark 3.1 The purpose of having a sufficiently large N is to attain the skin 
effect and therefore sufficiently weak scattering (see Section 2.2 for details) in 
order to make the Born approximation (32) more accurate. It turns out that the 
Born approximation needs not be very accurate in order to successfully implement 
Step 2. In numerical computation, N usually can be chosen only slightly greater 
than kw. 

Remark 3.2 In practice, the measurements of the scattered fields (33) on the 
boundary of D(zz) are not available for \m\ >> kzo, for they correspond to evanes- 
cent waves; therefore, the linear equations (32) are solved for finite number ofm. 
In numerical implementations, only two linear equations with m = ±N are solved 
to produce an approximate forward model $N. 

Step 3 (Linearization).   Now, suppose that q^ has already been obtained 
where fj > 0 is a point on the grid (35). We wish to determine qv where 77 is the 

0 T]     fj 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ^■ 

Figure 4: Update from 77 to 77. 

grid-point immediately to the left of 77. By definition, qn is the forward model 
observable to the scattering experiment £^(77) with the incident fields (30); there- 
fore, the corresponding scattered field v^m'v^ is connected to qn by the Lippmann- 
Schwinger equation (see (31)) 

v(m,v){x) = _k2 f     Gk(x,tyMt)-[vt't,)(t) + vlm>*\tM.        (36) 

In (36), qv and v^m,v^ are unknown inside D(zo), whereas v^m,rt\x)\x^dD^) is given 
as the scattering data. 

3.1. On the other hand, in the same experiment E(n), the forward q^ produces a 
scattered field, denoted here by v^771^ corresponding to the incident field UQ      . 

11 



The scattered field satisfies the Lippmann-Schwinger equation 

5<m">(x) = -k2 f    Gk(x, tym>l«fr't,)(t) + ^'"HtM-       (37) 
JD(za) 

Since qfj is known, the forward problem (37) is solved for the scattered field; 
therefore, v^m^ is known inside as well as on the boundary of D(w), for every 
m such that \m\ > i] — b. 

3.2. By assumption, J7 — 77 is small and qv depends on r\ smoothly (see Remark 
2.11); therefore the perturbations 

h   =   4a -qv, (38) 
Sv{m)   =   j)M_rM (39) 

are also small. For every m such that \m\ > 77 - 6, subtracting (36) from (37), 
and omitting terms quadratic in 6q and 8v^m\ we obtain an equation linking 6q 
linearly to 6v^: 

6vW(x) = -k2 (      Gk(x,0{M«(m) + Sq-[4m^ + «<m^]}(0-df.        (40) 

3.3. Denoting by K, Sm : c(D(w)) »-» c(D(w)) the two compact linear operators 
defined by the formulae 

K(w)(x)   =   -k2 I'      G*(x,0-ft(0-M0-#. (41) 

Sm(w)(x)   =   -k2 f      Gk(x,t)lvfr«\t) + v<m«X$]-w{t)-dt, (42) 

for arbitrary w € c(D(w)), we rewrite (40) as 

6v^ = K(6v^) + Sm(Sq). (43) 

Since the forward scattering problem is well-posed, the operator I - K is always 
invertible; thus 

6vW = (I - K)-1 ■ Sm(6q). (44) 

3.4. Denote by P : c(D(w)) i-> c(dD(w)) the projection operator, and by Lm : 
c(D(w)) H-» c(dD(w)) the linear operator defined by the formula 

Lm(w) = P ■ (I - K)-1 ■ Sm(w), (45) 

for arbitrary w e c(D{w)). Then the application of P on (44) yields 

8v^\x) = Lm(6q), (46) 

12 



for all x € dD(rv), and all m such that \m\ > 77 — 6. Since the linear operator can 
be evaluated and therefore is known, and since 8v^ is known on the boundary 
dD(w) (see (36), (37), and (39)), the linear system (46) can be solved as a 
least-squares problem for Sq. Finally, we obtain qn from q^ and Sq via (38). 

Remark 3.3 In reality, Sv^ is not available for \m\ » kzo (see Remark 3.2); 
therefore, only a finite numbers of the linear equations (4.6) need to be solved. In 
numerical implementations, the linear equations with 77 — b < \m\ < N are solved 
to produce an approximate forward model qn. 

Step 4 (Recursion). The process of linearization described in Step 3 can 
obviously be iterated in two directions. First, the solution qv is accurate to the 
second order of 8q\ the approximation can be improved by replacing q^ with qn 

and repeating the computations in Step 3. Secondly, when a satisfactory solution 
qv is obtained at 77 = 77;, it is used in Step 3 to determine the next forward model 
qv at 77 = 77t_! until qo is found. 

Remark 3.4 It turns out that only a low accuracy of the solution qv is required 
in numerical computation to maintain convergence of the recursion on n. In 
practice, the iteration discussed in Step 4 to improve qv is often unnecessary. 

3.2    Recursive Linearization on n 

In this subsection, we describe another recursive process, almost identical to that 
presented in the preceding subsection, which successively determines the forward 
models 

qn,   n = N,N-l,...,l,0. (47) 

This linearization process is accomplished on the discrete propagation number 
n. Its procedures are parallel to those of the preceding subsection. We briefly 
present them here for completeness and for the reason that the numerical results 
given in Section 4 are produced using this version of the linearization method. 

Step 1 (Initialization). Choose N sufficiently greater than kw, so that the 
skin effect is attained (in practice, N is usually chosen just slightly greater than 
kw, see Remark 3.1). 

Step 2 (Born Approximation). Obtain the observable forward model <?N by 
solving the linear equation (10) with m = ±N. 

Step 3 (Linearization). Now, suppose that qn+\ has already been obtained 
where n < N is a positive integer. We wish to determine qn which is the for- 
ward model observable to the scattering experiment J&(n), and which satisfies 

13 



the equations (see (21)) 

-k2 I        Gk(x,0-qn(0¥^(0 + ^(m)(0]« = V>(m)(*), (48) 
J A(n,k) 

for all m such that \m\ > n. In (48), ip^ is unknown inside D(w), but is given 
on the boundary of D{UJ) as the scattering data (see (23)). 

3.1. In the same scattering experiment E(n), the forward model qn+i, which is 
known, produces the scattered field, denoted here by ip(m\ corresponding to the 
incident field $,   . Therefore, ft™) satisfies the equation 

-k2f     Gk(X,o-qn+i(o¥<r\o + t?(m)(oide = #m)o«o,    (49) 
JA(n+l,k) 

and is obtained by solving the forward problem (49). 

3.2. Assuming that qn+x is close to qn (see Remark 3.6), we observe that the 
perturbations 

S<J   =   9n+i - qn, (50) 
6tf>W   =   ft™)-^™) (51) 

are small. For every \m\ > n, subtracting (48) from (49), and omitting terms 
quadratic in Sq and 6^m\ we obtain an equation linking 8q linearly to Sip^: 

-k2 I       Gk(x,0{qn+rS^m) + 6q-[4n) + 4>{m)}}(0< = 6^n\x).      (52) 
JA{n,k) 

3.3. Denoting by K, Sm ■ c(A(n,k)) *-> c(A(n,k)) the two compact linear oper- 
ators defined by the formulae 

K(w)(x)   =   -k2 I        Gk(x,0-qn+1(OMO-d£, (53) 
JA(n,k) 

sm(w){x) = -k21    Gfc(x,o-[^m)(o + ^(m)(0]-w(0-de,    (54) 
J A[n,k) 

for arbitrary w G c(A(n, &)), we rewrite (52) as 

S^ = K(6x/;^) + Sm(Sq). (55) 

Since the forward scattering problem is well-posed, the operator / — K is always 
invertible; thus 

8^ = (I - K)-'■ Sm(6q). (56) 

3.4. Denote by P : c(A(n,k)) i-» c(dD(w)) the projection operator, and by 
Lm : c(A(n, k)) >-»■ c(dD(zo)) the linear operator defined by the formula 

Lm(w)(x) = P ■ (I - K)-1 ■ Sm(w), (57) 
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for arbitrary w € c(A(n, k)). Then the application of P on (56) yields 

S^m\x) = Lm(Sg), (58) 

for all x G dD(w), and all m such that \m\ > n. Since the linear operator can 
be evaluated and therefore is known, and since Stp^ is known on the boundary 
dD{w) (see (48), (49), and (12)), the linear system (58) can be solved as a 
least-squares problem for Sq. Finally, we obtain qn from qn+i and Sq via (51). 

Step 4 (Recursion). Repeat the linearization procedures in Step 3 till n = 0 
where q0 is obtained. 

Remark 3.5 In reality, Sip^ is not available for \m\ > kw (see Remark 3.2); 
therefore, only finite numbers of the linear equations (58) need to be solved. In 
numerical implementation, the equations with n < \m\ < N are solved to produce 
an approximate forward model qn. 

Remark 3.6 The perturbation Sq of (50), unlike that of (38), can not be made 
arbitrarily small, since n in (50) is discrete. In fact, our numerical experiment 
shows that Sq may not be small at all. This, in principle, makes the perturbational 
analysis invalid and may lead to divergence of the recursive linearization. It turns 
out that Sq is small in A(n+1, k), the illuminated area by the experiment E(n+1); 
therefore, the perturbational analysis can be carried out there to linearize the 
relationship between 6q\A(n+i,k) and Stß^m>. However, Sq usually is not small in 

T(n,k) = A(n,k)\A(n + l,k), (59) 

which is the area illuminated by E(n) but not by E(n+l), and which we refer to as 
the transition zone. Fortunately, this layer is dimly illuminated by the experiment 
E(n), and across it the skin effect occurs. Therefore, in the transition zone, the 
Born approximation is valid (see Section 2.2) and it linearizes the relationship 
between q\T(n,k) and the scattered fields of (48); consequently, the relationship 
between Sq\T(n,k) = 9|r(n,/t) and S^m> is also essentially linear. In summary, in 
spite of the fact that Sq may not be small in A(n, k), it is essentially linearly 
connected to S^m\ as is formulated in (52) and finally in (58). 

3.3    Recursive Linearization with an Initial Guess 

Neither of the inversion procedures described in Sections 3.1 and 3.2 requires an 
initial guess of the scatterer to start. But an initial guess can be incorporated into 
the inversion procedures and proves beneficial to the reconstruction (see Example 
3, Section 4) if it is not a bad approximation to the scatterer to be recovered. 
Usually, an initial guess is produced with a method of inversion at a relatively 
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low frequency k, where low-frequency components of the scatterer are recovered 
(see [7] for more details and numerical examples). The inversion method used to 
obtain an initial guess could be the one presented in [7] or described here in this 
paper. 

The introduction of the initial guess to the two inversion procedures of Sec- 
tions 3.1 and 3.2 is straightforward. We take the latter as an example to describe 
it. The only modification is made in Step 2 of Section 3.2 where gN is written as 

9N = Initial + h- (60) 

Consequently, 8q can be obtained by solving the linear equation (10) with m = 
±N. With qN known, we proceed to Step 3 without any further alterations to the 
algorithm. 

4    Numerical Experiments with Radially Sym- 
metric Scatterers 

Both versions of the recursive linearization method (see Sections 3.1 and 3.2) 
were implemented numerically. But since their performances are very similar, 
we only present numerical results of the second version based on the discrete 
propagation number n. 

Although the inverse scattering problem and its linearization are described 
in this paper in terms of the Lippmann-Schwinger integral equations, models 
based on other equations exist, for example, the Riccati equations (see [6], [7]). 
Since an accurate and reliable code solving the integral equations is not presently 
available to the author, the actual equations employed are the Riccati equations 
whose Born approximation (required in Step 2 of Section 3.2) and perturbational 
analysis (all the procedures in Step 3 of Section 3.2) are discussed in great details 
and implemented numerically in [7]. 

For reconstruction of a general two-dimensional scatterer of N x N wave- 
lengths, it turns out that the algorithm based on the integral equations requires 
0(N5) operations, whereas the algorithm based on the Riccati equations requires 
0(N6) operations, an approach too expensive to be used in solving a problem 
with N = 10. In this section, therefore, we only present numerical results of 
inversion of cylindrically symmetric scatterers, for which the algorithm requires 
0(N3) operations. The numerical experiments for general scatterers will be pre- 
sented later when the code for the integral equations is acquired 

4.1    The Forward Problem 

As is mentioned in the beginning of Section 4, the Riccati equations, instead of the 
Lippmann-Schwinger equations, are used in the forward modeling. A FORTRAN 
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code was written to solve the forward problem required in Step 3.1 of Section 
3.2; see [7] for details of the numerical treatment of the Riccati equations. For a 
prescribed scatterer q, the forward problem is also solved to produce the synthetic 
scattering data (see (23)). The numerical solutions in both cases are accurate 
at least to four digits. For a cylindrically symmetric scatterer, the forward solve 
requires 0(N2) operations. 

4.2 The Least-squares Problem 

Since the ill-posedness of the original nonlinear inverse problem is inherited by the 
linearized problem (58), it must be solved as a least-squares problem. This is easy 
because it is a linear problem, for which the standard conjugate gradient method 
was used (see [7] for more details). As with solving other least-squares problems, 
the conjugate gradient iterations must be carefully measured and terminated for 
the stability of the solution. Here, the stop condition is on the magnitude of 
the residual: the iterative procedure is terminated and the solution is obtained 
when the L2 norm of the residual is comparable to, or not less than, the pre- 
cision in which the forward problem is solved or the scattering measurement is 
collected. This is the only place in the inversion method where "regularization 
of ill-posedness" is numerically imposed. 

4.3 Numerical Results 

Several technical details regarding the presentation of the numerical results re- 
quire explanations. 

1. The radius zu of the disk scatterer is chosen as zu = -K for convenience, 
so that the number of wavelengths across the diameter of the disk is the wave 
number k. 

2. In plots showing the results of reconstructions, the prescribed scatterer 
functions are depicted in solid curves, whereas the numerically reconstructed 
scatterers are represented by dotted curves. 

3. The L2 error of a reconstruction is defined by the formula 

e2 = (H'llir) - %]2-r-dr) ' , (61) 

where qo is the reconstructed scatterer obtained at the end of the recursive algo- 
rithm (see Section 3.2). 

4. Scattering data of various accuracies are used in the inversion to examine 
the stability of the algorithm. Scattering data of low precision is obtained from 
data of high precision by truncation. We say that the data is accurate to D digits 
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if each number in the high precision data is truncated to D digits. For instance, 
truncating the number 0.12345 to three digits yields 0.123. 

Example 1. Reconstruct a scatterer defined by the formula 

q(r) = 0.1 • [1 - cos(14r)], (62) 

inside D(TT). Four inversions were made at k = 8.6 using scattering data accurate 
to D = 1, 2, 3, 4 digits; see Table 1 for the L2 error of the reconstructions. Figure 
5 shows the reconstructed scatterer against the exact, for D = 1, 2, 3, 4. With 
D = 3, the process of layer-stripping is evidently shown in Figures 6—8 where 
the reconstructions of qn of (47) are plotted. 

D 1 2 3 4 
e2 0.7450E-1 0.1719E-1 0.648E-2 0.598E-2 

Table 1: Errors of Reconstructions with D = 1,2,3,4,  Example 1. 

Example 2. Reconstruct a scatterer defined by the formula 

q(r) = 0.26 • [0.55cos(4r) - 0.44sin(8r) + 0.25sin(12r) + 0.14cos(16r)],    (63) 

inside D(ir). Four inversions were made at frequency k = 9.3 with data accu- 
rate to, respectively, D = 1, 2, 3, 4 digits; see Table 2 for the L2 error of the 
reconstructions. Four more inversions were also made separately at frequencies 

D 1 2 3 4 
e2 0.181 0.421E-1 0.309E-1 0.198E-1 

Table 2: Errors of Reconstructions at k = 9.3, D = 1,2,3,4,  Example 2. 

k = 2.0, 4.1, 6.2, 9.3 with scattering data accurate to four digits. Table 3 shows 
the L? error of the reconstructions; Figures 9 and 10 show plots of the recon- 
structions and the error distributions.   According to Heisenberg's uncertainty 

Jfc 2.0 4.1 6.2 9.3 
e2 0.691 0.332 0.155 0.172E-1 

Table 3: Errors of Reconstructions at Various Values of k,  Example 2. 

principle (see [7]), only those Fourier modes of the scatterer q whose frequencies 
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are lower than or about 2k can be recovered in a reconstruction at wave number 
k. Therefore, at k = 2.0, only the first term of (63) is recovered; at k = 4.1, 
roughly the first two terms of (63) are recovered; at k = 6.2, roughly the first 
three terms of (63) are recovered; and at k = 9.3, all four terms are essentially 
recovered. In fact, if we regard the first term alone, the first two terms alone, 
and the first three terms alone as approximations to the scatterer function (63), 
then they approximate (63) with L2 errors 0.701, 0.339, and 0.170, which closely 
match the errors of inversions given in Table 3. 

At k = 4.1, 6.2, the reconstructions of the intermediate forward models qn of 
(47) in the recursive linearization process are shown in Figures 11 and 12. The 
corresponding plots at k = 2.0, 9.3 are not shown here because they are similar 
to those shown in Figures 11 and 12. 

Example 3. Reconstruct a scatterer defined by the formula 

q(r) — 0.2 • [sin(4r) + ci-sin(8r) -f c2-sin(14r)], (64) 

with c\ = —0.846153846, c2 = 0.153846154. The scatterer was reconstructed at 
k = 9.7. Figure 13 shows plots of the reconstruction and the error distribution. 
Four more inversions were made with four different initial guesses g,m'ti, <Jmt<25 

qinitz, and gtm-t4 defined by the formulae 

qinin(r) = 0.2 • [sin(4r) - crsin(8r)], (65) 

qinw(r) = 0.2 • [sin(4r) - cr sin(8r) + c2- sin(14r) + 0.1- sin(13r)], (66) 

qinitz{r) = 0.2 • [sin(4r) - cr sin(8r) + c2- sin(14r) + 0.1- sin(18r)]. (67) 

qiniti{r) = 0.2 • [sin(4r) - cv sin(8r) + c2- sin(14r) + 0.1- sin(22r)]. (68) 

Table 4 shows the L2 errors of the initial guesses and of the final reconstructions. 
Again according to Heisenberg's uncertainty principle (see [7]), the highest fre- 
quency of the Fourier modes of the scatterer that can be recovered is about 
2k = 2 x 9.7 = 19.4; therefore, the mode sin(13r) or sin(18r) in the initial guess 
is recognizable in the scattering experiment and can be eliminated from the initial 
guess in the reconstruction, whereas the mode sin(22r) in qinm is not observable 
to the scattering experiment and can not be eliminated from the initial guess in 
the reconstruction; see Table 4. 

Init. Guess None linitl <linit2 ?mit3 <liniU 

e2 (Init.) 1.0 0.114 0.732E-1 0.736E-1 0.744E-1 
e2 (Final) 0.133E-1 0.529E-2 0.262E-2 0.138E-1 0.673E-1 

Table 4: Errors of Reconstructions with Initial Guesses, Example 3. 
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Example 4. Reconstruct a scatterer defined by the formula 

/ 0.2-[sin(4r) + crsin(8r) + c2-sin(14r)],   r < 2.2707, 
q[ ] ~ \ 0 2.2707 < r < 7T,        {m) 

with ex = -0.846153846, c2 = 0.153846154. The scatterer function is identical 
to that of Example 3 for r < 2.2707, and there is a discontinuity across the circle 
r = 2.2707. The inversion was made at k = 9.7. As is expected, the Gibbs' 
phenomenon appears in the reconstructed scatterer near the discontinuity; see 
Figure 14 for plots of the reconstruction and the error distribution. The recovery 
of the intermediate forward models qn of (47) are shown in Figures 15—17. 

5    Discussions 

We have presented a new inversion method and its preliminary numerical results 
in the special case of cylindrically symmetric scatterers. In this section, we make 
several technical remarks on the numerical experiments provided in Section 4.3, 
and discuss possible directions of future investigation of the method. 

1. Numerical implementations for general scatterers in two dimensions will 
be presented on a later date when a code solving the two-dimensional Lippmann- 
Schwinger equation is available. The extension of the inversion method to the 
problem of electrical impedance imaging, though straightforward, constitutes a 
separate topic, and will be investigated and presented separately. In this case, a 
disk containing the inhomogeneity is probed with electrical potential of the form 

4(r,0) = rm • tim\   m>0. (70) 

Therefore, every probing field with m > 0 is a decaying mode in any interval 
[0, A]. This means that the number of parameters which can be recovered, inde- 
pendent of the size of the scatterer, is limited. In many applications, even such 
a limited resolution is difficult to acquire, and, if attainable, would be useful. 

2. The skin effect and the illuminated areas of various depth can be achieved 
in three dimensions and in geometries other than that of the disk used here in 
this paper. For example, in underwater environment where the transducers are 
restricted on the surface of water, we may use the incident waves of the form 

<!>0{x,y,z) = eimx+iny-e-pz, (71) 

to attain the skin effect, where z is the depth of the ocean, m, n are real numbers 
such that m2 + n2 > k2 so that p = y/m2 + n2 — k2 is a positive number. There- 
fore, p > 0 is a parameter which controls the depth of penetration of the incident 
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field. Recursive linearization can be carried out on the continuous parameter p 
for decreasing p till p = 0. Then the recursion may be on the real parameter / of 
the incident field 

4>0{x,y,z) = eimx+in*-eil% (72) 

for increasing / in the interval [0, k). 

3. The stability of the method is demonstrated by reconstructions with noise- 
corrupted scattering data in Examples 1 and 2. More stability tests were made, 
the results being similar to those presented here. The inversion method does 
not require the solution of unstable initial value problems which the standard 
layer-stripping algorithm must solve in order to recover the scatterer layer by 
layer. When the ill-posed and nonlinear inverse problem is recursively linearized, 
the ill-posedness is passed to each linear problem which we know very well how 
to solve to maintain stability. Thus, the issue of stability is trivial here so far as 
we do not insist on recovering modes of the scatterer that are not observable to 
our scattering experiment. Conversely, if somehow during the recursive precess 
the intermediate result is polluted with such unobservable modes, usually high- 
frequency modes, there is no mechanism of the algorithm that can remove them, 
as is shown in Example 3. 

4. The algorithm starts by illuminating the scatterer with an incident wave 
of high propagation number that penetrates only a thin layer of the scatterer. 
There, the measurement of the scattered field is weak, and therefore is prone to 
contaminations of noise. In principle, the propagation number m is required to be 
considerably greater than kw (see Section 2.2) in order to make the relationship 
between the measurement and the scatterer essentially linear. In practice, fortu- 
nately, only a roughly linear relationship is needed to produce an approximate ob- 
servable forward model in the first layer. More precisely, the highest propagation 
number m can be chosen only slightly greater than kw such that the measure- 
ment of the far-field can be 10%—30% as strong as the strongest measurement 
of all propagation numbers. Thus, the so-called weak scattering required theo- 
retically to attain ideal linearization does not practically cause problem to the 
noise-to-signal ratio: if the strongest scattering can be measured accurately, so 
can the weakest. 
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Figure 13: Reconstruction and Error Function, Example 3. 
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Figure 15: Reconstructions of qn at k = 9.7, n = 29,28,..., 20,  Example 4. 
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Figure 16: Reconstructions of qn at k = 9.7, n = 19,18,..., 10,  Example 4. 
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Figure 17: Reconstructions of qn at k = 9.7, n = 9,8,..., 0,  Example 4. 
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